Главная - Настройка
Рнк нить вирусов. Репродукция вирусов (продуктивный)

Минус - РНК-вирусы подразделяются на три главные морфологические категории: рабдовирусы, парамиксовирусы и ортомиксовирусы. В плане биохимической стратегии рабдовирусы и парамиксовирусы очень близки друг к другу и составляют большую часть хорошо изученных вирусов класса Vа. В данном разделе основное внимание будет уделено только одному рабдовирусу - вирусу везикулярного стоматита (ВВС), так как он изучен наиболее детально. Хотя ВВС и патогенен для крупного рогатого скота, вызываемые им заболевания протекают легко и не приводят к серьезным экономическим убыткам. В культурах клеток ВВС размножается быстро и урожай его достигает высоких титров. Зараженные им клетки погибают. При заражении чувствительных клеток другими рабдовирусами или парамиксивирусами обычо развивается персистентная инфекция, не приводящая к гибели клеток. Поэтому такие системы вирус-клетка намного труднее поддаются изучению. Ортомиксовирусы, из которых наиболее известными являются вирусы гриппа человека, имеют сегментированным геном, состоящий из ряда отдельных минус-цепей РНК.

Вирион ВВС, подобно вирионам всех других тогавирусов, покрыт внешней оболочкой, но в отличие от них имеет характерную форму пули. Само название «рабдовирусы» происходит от греческого корня, означающего «палочка», и обусловлено асимметричностью этих частиц. Пулеобразная форма вириона отражает форму его нуклеокапсида, предоставляющего собой свернутую в цилиндр спираль и содержащего одну молекулу РНК с мол. Весом 4 . 10 6 . Эта РНК не обладает ни одним из характерных признаков м РНК вирусов эукариот: на ее 3-м конце нет последовательности poly (А), а на 5-м конце нет «шапочки». Кроме того, она не обладает инфекционностью. Ее функция состоит в том, что она служит мартицей для синтеза вирусных м РНК и, следовательно, является минус - цепью РНК. Нуклеокапсид ВВС представляет собой очень стабильную структуру, и находящаяся в нем РНК полностью защищена от действия рибонуклеазы. Нуклеокапсид этого вируса инфекционен, но его удельная инфекционность очень мала. Вирион ВВС содержит пять различных белков, и других вирусных белков в зараженных клетках не обнаруживается. Белок, на долю которого приходится основная масса белков нуклеокапсида и вириона в целом, называется белком N. Нуклеокапсид содержит небольшое количество еще двух белков, называемых белками L и № 9. Они принимают участие в синтезе вирусной РНК. Пространство между нуклеокапсидом и липопротеидной оболочкой вириона заполнено молекулами еще одного вирусного белка, называемого белком М. Наконец, снаружи от двойного слоя липидов оболочки находится белок G, образующий упорядоченную систему расположенных на поверхности вириона шипов. Давно не попадалось порно с перчинкой? А что ты думаешь про секс с бабушками? Эти старые развратницы могут еще многое. Поэтому даже и не обсуждается – надо смотреть порно бабушки на этом обновленном портале. Опытные актрисы есть на любой вкус. Их любовники ничего не стесняются и сексом с бабушками наслаждаются! Насладись и ты! И не забудь добавить сайт в закладки, чтобы не потерять.

В отличие от рабдовирусов парамиксовирусы не имеют пулеобразной формы, а представляют собой неправильные сферы, что отражает менее упорядоченную укладку их нуклеокапсидов.

Оглавление темы "Типы микроорганизмов. Вирусы. Вирион.":
1. Микроорганизмы. Типы микроорганизмов. Классификация микроорганизмов. Прионы.
2. Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.
3. Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида.
4. Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки (М-белки) вирусов. Репродукция вирусов.
5. Взаимодействие вируса с клеткой. Характер взаимодействия вирус-клетка. Продуктивное взаимодействие. Вирогения. Интерференция вирусов.
6. Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.
7. Проникновение вируса в клетку. Виропексис. Раздевание вируса. Теневая фаза (фаза эклипса) репродукции вирусов. Образование вирусных частиц.
8. Транскрипция вируса в клетке. Трансляция вирусов.
9. Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.

Внеклеточная форма - вирион - включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма - вирус - может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.

Морфология вирусов. Размеры вирусов.

Нуклеиновые кислоты вирусов

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр - ДНК-содержащие, а тогавирусы, пикорнавирусы - РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный - более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине.

Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, - своеобразные маркёры вирусной ДНК.

Рис. 2-1. Размеры и морфология основных возбудителей вирусных инфекций человека .

Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными - от 2 сегментов у ареновирусов до 11 - у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) - +РНК.

Плюс-нити РНК представлены одиночными цепочками, имеющими характерные окончания («шапочки») для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой вирусом клетки, то есть выполнять функции мРНК. Плюс-нити выполняют следующие функции: служат мРНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомах, то есть они не могут функционировать как мРНК. Однако такие РНК служат матрицей для синтеза мРНК.

Инфекционность нуклеиновых кислот вирусов

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

А) обладает инфекционной активностью

Б) несет наследственную функцию

Г) не обладает функцией информационной РНК

У каких микроорганизмов материальной основой наследственности является РНК?

А) у бактерий

Б) у спирохет

В) у РНК – содержащих вирусов

Г) у ДНК – содержащих вирусов

Д) у микоплазм

Что такое трансформация?

А) восстановление поврежденной ДНК

Б) передача генетической информации при контакте бактериальных клеток разной «половой» направленности

В) передача генетической информации с помощью фрагмента ДНК

Г) передача генетической информации от клетки донора клетке реципиента с помощью бактериофага

Какие различают формы генетических рекомбинаций?

А) репарация;

Б) трасформация;

В) трансдукция;

Г) конъюгация;

Д) все ответы правильные;

Е) все ответы неправильные.

Что такое трансдукция?

А) передача генетического материала при помощи бактериофага

Б) необходим контакт клеток донора и реципиента

В) передача генетического материала с помощью РНК

Г) передача генетического материала с помощью полового фактора

Что изучает генетика микроорганизмов?

А) Ультраструктуру микроорганизмов;

Б) Вопросы наследственности и изменчивости микроорганизмов;

В) Процессы метаболизма микроорганизмов;

Г) Все ответы правильные;

Д) Все ответы неправильные.

Чем характеризуется «плюс» цепь РНК?

А) несет наследственную функцию

В) способна встраиваться в хромосому клетки

Г) обладает функцией информационной РНК

Д) не обладает функцией информационной РНК

Е) все ответы правильные.


Занятие № 7

ТемА: Бактериологический метод диагностики инфекционных заболеваний. Питание бактерий. Принципы культивирования микроорганизмов. Питательные среды. Методы стерилизации.

I. Мотивационная характеристика, темы занятия.

Усвоение вопросов бактериологического метода определения чистой культуры аэробных и анаэробных инфекционных заболеваний, необходимых для диагностики и лечения, изучение которых осуществляется также на кафедре эпидемиологии, инфекционных болезней, детских инфекций и др. клинических дисциплин.

Необходимый исходный уровень знаний: Физиология микроорганизмов.

II. Целевые задачи

Студент должен знать: Студент должен уметь:
1. Бактериологический метод диагностики инфекционных заболеваний, его цель и этапы. 1. Приготовить питательные среды.
2. Типы питания бактерий. 2. Оценить эффективность стерилизации и дезинфекции.
3. Принципы культивирования микроорганизмов.
4. Питательные среды, требования, предъявляемые к питательным средам.
5. Классификация питательных сред, состав и приготовление.
6. Методы стерилизации.
7. Механизм действия стерилизующих факторов на молекулярную структуру микроорганизмов.
8. Отличия понятий контаминации и деконтаминации, дезинфекции и стерилизации, асептики и антисептики.
9. Современные технологии стерилизации и аппаратура.
10. Способы контроля эффективности стерилизации и дезинфекции.

Основная литература:

1. Микробиология с вирусологией и иммунологией / Под ред. Л.Б. Борисова, A.M. Смирновой - М., 1994.

2. Микробиология и иммунология. / Под. ред. А.А. Воробьева. -М., 1999.

3. Медицинская микробиология. / Под ред. акад. РАМН В.И. Покровского. - М., 2001.

4. Микробиология, вирусология, иммунология / Под ред. А.А. Воробьева. – М., 2004

5. Микробиология, вирусология и иммунология / Под редакцией В.Н. Царева – М., 2009.

6. Основы медицинской биотехнологии. /Под ред. А.А. Воробьева. - М., 1990.

7. Руководство к практическим занятиям по медицинской микробиологии, вирусологии и иммунологии. /Под. ред. В.В. Теца, 2002.

8. Практикум лабораторных работ с иллюстрированными ситуационными заданиями по микробиологии, иммунологии и вирусологии / Под ред. В.Н. Царева, А.А. Воробьева. – М., 2008.

Дополнительная литература:

Физиология микроорганизмов / Методические разработки к практическим занятиям по общей микробиологии. – Ростов-на-Дону, 2001.

1. Методы лабораторной диагностики / Методические рекомендации для студентов лечебного, педиатрического, стоматологического, фармацевтического факультетов, факультета высшего сестринского образования – Владикавказ, 2003.

2. Общая микробиология / Учебно-методические рекомендации для студентов лечебного факультета. – Владикавказ, 2004.

3. Методические разработки по клинической микробиологии / Учебно-методические разработки для студентов лечебного и педиатрического факультетов - Владикавказ, 2005.

4. Забор патологического материала для микробиологической, вирусологической и серологической диагностики инфекций / Учебно-методические разработки для студентов высшего сестринского образования. – Владикавказ, 2005.

6. Сборник методических разработок по микробиологии для студентов лечебного, педиатрического, медико-профилактического и фармацевтического факультетов / Учебно-методические разработки, часть I.- Владикавказ, 2008.

III. Задания для самостоятельной внеаудиторной работы

1. Дайте определение микробиологического исследования выделения чистых культур микроорганизмов. Каковы основные принципы?

2. Методы выделения чистых культур.

3. Перечислите этапы выделения чистых культур.

4. Классификация питательных сред и методы их приготовления.

5. Методы стерилизации. Заполните таблицу:

6. Дайте определение асептики, антисептики, дезинфекции и стерилизации.

7. Перечислите химические методы дезинфекции:

8. Как осуществляется контроль эффективности стерилизации (методы).

САМОКОНТРОЛЬ

(выберите один или несколько правильных ответов)

1. При стерилизации наиболее быстро разрушаются следующие виды химических связей в пептидогликане бактериальной клеточной стенки:

А. Пептидные;

Б. Гликозидные;

В. Водородные;

Г. Ковалентные.

2. Для разрушения прионов необходимо:

А. Нарушить структуру НК;

Б. Нарушить структуру белка приона;

В. Разрушить все молекулы, образующие прион;

Г. Разрушить пептидогликан.

3. Перечислите способы стерилизации, освобождающие объект от споровых форм микробов:

А. Облучение ультрафиолетом;

Б. Автоклавирование;

В. Пастеризация;

Г. Сухим жаром.

4. Комплекс мероприятий, направленных на уничтожение на/в объектах патогенных микробов называются:

А. Асептика;

Б. Антисептика;

В. Дезинфекция;

Г. Стерилизация.

5. Если средство обладает моющим и антимикробным свойствами:

А. Допускается совмещение дезинфекции и предстерилизационной отчистки;

Б. Дезинфекция и предстерилизационная отчитска должны проводиься раздельно;

В. Данное средство может использоваться только для очистки;

Г. Данное средство может использоваться только для дезинфекции.

6. Сложные среды, содержащие белковые и углеводные компоненты, стерилизуют:

А. Дробно-текучим паром;

Б. Кипячением;

В. Сухим жаром в печи Пастера;

Г. Тиндализацией;

Д. Фильтрованием;

Е. Химической дезинфекцией.

7. К физическим методам стерилизации относятся:

А. Ультразвук;

Б. Ультрафиолетовые лучи;

В. Антибиотики;

Г. Фильтрование;

Д. Паровая стерилизация;

Е. Сухожаровая стерилизация.

8. Какие факторы используются при автоклавировании:

А. Температура;

Б. Фильтры;

Г. Давление.

9. К простым средам относятся:

Б. Пептонная вода;

В. Кровяной агар;

Г. Среда Гисса;

Е. Сывороточные среды.

10. К сложным средам относятся:

Б. Пептонная вода;

В. Кровяной агар;

Г. Среда Гисса;

11. В жидкой питательной среде рост микробов может наблюдаться в виде:

А. Колоний;

Б. Диффузного помутнения;

В. Придонного помутнения;

Г. Пристеночного налета.

12. Плотность питательных сред зависит от содержания:

А. Сыворотки крови;

Б. Сахарозы;

В. Агар-агара;

Г. Пептона.

13. На рост бактерий влияют следующие условия культивирования:

Б. рН среды;

В. Температура;

Г. Влажность среды;

Д. Факторы роста.

14. Оптимальной температурой для выращивания большинства патогенных микроорганизмов является:

15. Питательные среды по назначению делят на:

А. Простые;

Б. Элективные;

В. Жидкие;

Г. Дифференциально-диагностические;

Д. Транспортные.

16.Для осуществления активного транспорта веществ в бактериальную клетку необходимо присутствие:

а) транскриптазы

б)транслоказы

в)гиалуронидазы

д)нейроминидазы

г)ДНК-азы

17.Процесс биологического окисления субстрата осуществляется микробной клеткой:

а) рибосомах

б)мезосомах

в)митохондриях

г)внутриклеточных включениях

д)лизосомах

18.Микробы, использующие неорганические источники углерода и хемосинтезирующие реакции для получения энергии называются:

а)фотолитотрофами

б)фотоорганотрофами

в)хемолитотрофами

д)хемоорганотрофами

д)истинными хемоорганотрофами

19.Среда тиогликолевая служит для выделения:

а) облигатных аэробов

б) облигатных анаэробов

в) факультативных аэробов

г) факультативных анаэробов

д) все ответы правильные

20.Энергия в микробной клетке запасается в виде:

б) волютин

е) все ответы правильные

21.Для анаэробного культивирования используют:

а) баллоны с бескислородной газовой смесью

б) анаэростат

в) вакуумный насос

г) газовый пакет с редуцирующими реагентами

д) все ответы правильные

22. Среды, содержащие сахара и другие углеводы, стерилизуют:

а) автоклавированием

б) кипячением

в) сухим жаром в печи Пастера

г) фильтрованием

д) дробно-текучим паром

23.На рост бактерий влияют следующие условия культивирования:

а) газовый состав

в) факторы роста

г) рН среды

д) влажность среды

е) все ответы неправильные

24.Процессы биологического окисления сопряжены с реакциями:

а) катабализма

б) амфиболизма

в) анаболизма

г) биосинтеза

д) расщепления веществ

25.При стерилизации наиболее быстро разрушаются следующие виды химических связей в пептидогликане бактериальной клеточной стенки:

а) пептидные

б) гликозидные

в) водородные

г) ковалентные

26.Пастерилизацию с последующим быстрым охлаждением проводят в следующем режиме:

а) при t 100 С в течении 30 секунд

б) при t 65-95 С в течении 30 сек.-2 минут

в) при t 35-55 С в течении 60 минут

г) все ответы верны

27.Для контроля качества стерилизации применяют:

а) физико-химические тесты

б) фенолфталеиновую пробу

в) биологические тесты

г) молекулярно-генетические методы

28.Кислоты как конечный продукт метаболизма источника энергии:

а) дыхание

б) брожение

д) ни тот, ни другой

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Строение и классификация вирусов

Вирусы относятся к царству Vira . Это

    мель­чайшие микробы («фильтрующиеся агенты»),

    не имеющие клеточного строения, белоксинтезирующей системы,

    Они являются автономными генетическими структурами и отличаются осо­бым, разобщенным (дизъюнктивным), спо­собом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кисло­ты вирусов и их белки, затем происходит их сборка в вирусные частицы.

    Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различ­ ной (рис.):

    палочковидной (вирус табач­ной мозаики),

    пулевидной (вирус бешенства),

    сферической (вирусы полиомиелита, ВИЧ),

    ни­тевидной (филовирусы),

    в виде сперматозои­да (многие бактериофаги).

Размеры вирусов определяют:

    с помощью электронной микроскопии,

    методом улырафильтрации через фильтры с известным диаметром пор,

    методом ультрацентрифугирования.

Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее круп­ным - вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие виру­ сы. Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких со­тен генов и представлен различными видами нуклеиновых кислот:

    двунитевыми,

    однонитевыми,

    линейными,

    кольцевыми,

    фрагментированными.

Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) гено­ мом. Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

Различают:

    просто устроенные вирусы (на­пример, вирусы полиомиелита, гепатита А) и

    сложно устроенные вирусы (например, виру­сы кори, гриппа, герпеса, коронавирусы).

У просто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболоч­кой, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц- капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.

У сложноустроенных вирусов (рис.) капсид окружен липопротеиновой оболоч­ кой - суперкапсидом, или пеплосом. Оболочка вируса является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопроте иновые «шипы», или «шипики» (пепломеры, или суперкапсидные белки). Под оболочкой некоторых вирусов находится М-белок.

Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусы состоят из нукле­иновой кислоты, капсида и липопротеино­вой оболочки.

Вирионы имеют :

    спиральный,

    икосаэдрический (кубический) или сложный тип симметрии кап­сида (нуклеокапсида).

Спиральный тип сим­метрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеи­новую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защи­щают вирионы от воздействия окружающей среды, обусловливают избирательное взаимо­действие (адсорбцию) с определенными клет­ками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сер­ дцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

В вирусологии используют следующие так­ сономические категории :

    семейство (название оканчивается на viridae ),

    подсемейство (на­звание оканчивается на virinae ),

    род (название оканчивается на virus ).

Однако названия родов и особенно подсемейств даны не для всех ви­русов. Вид вируса не получил биноминального названия, как у бактерий.

В основу классификации вирусов поло­ жены следующие категории:

    тип нуклеино­ вой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особен­ ности воспроизводства вирусного генома (табл. 2.3),

    размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (супер капсида).

    чувствительность к эфиру и дезоксихолату,

    место размножения в клетке,

    антигенные свойства и др.

Вирусы поражают позвоночных и беспозво­ночных животных, а также бактерии и расте­ния. Являясь основными возбудителями ин­фекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложне­ниям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных (канонических) вирусов известны инфекционные молекулы, кото­рые не являются вирусами и называются прионами. Прионы- термин, предложенный С. Прузинером, представляет собой анаграм­му английских слов «инфекционная белковая частица.» Клеточная форма нормального прионового протеина (РгРС) имеется в организме млекопитающих, в том числе человека, и выпол­няет ряд регуляторных функций. Его кодирует PrP-ген, расположенный в коротком плече 20-й хромосомы человека. При прионных болезнях в виде трансмиссивных губкообразных энцефа­лопатии (болезнь Крейтцфельда-Якоба, куру и др.) прионный протеин приобретает другую, инфекционную форму, обозначаемую как РгР & (Sc - от scrapie - скрепи, прионной инфекции овец и коз). Этот инфекционный прионовый протеин имеет вид фибрилл и отличается от нор­мального прионного протеина третичной или четвертичной структурой.

Другими необычными агентами, близкими к вирусам, являются вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие

3.3. Физиология вирусов

Вирусы - облигатные внутриклеточные па­разиты, способные только к внутриклеточно­му размножению. В вирусинфицированной клетке возможно пребывание вирусов в раз­личных состояниях:

    воспроизводство многочисленных новых вирионов;

    пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки (в виде провируса);

    существование в цитоплазме клетки в ви­де кольцевых нуклеиновых кислот, напоми­нающих плазмиды бактерий.

Поэтому диапазон нарушений, вызывае­мых вирусом, весьма широк: от выраженной продуктивной инфекции, завершающейся ги­белью клетки, до продолжительного взаимо­действия вируса с клеткой в виде латентной инфекции или злокачественной трансформа­ции клетки.

Различают три типа взаимодействия вируса с клеткой : продуктивный, абортивный и интегративный.

1. Продуктивный тип - завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

    Абортивный тип - не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

    Интегративный тип, или вирогения -характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

    Репродукция вирусов (продуктивный)

Продуктивный тип взаимодействия виру­ са с клеткой, т. е. репродукция вируса (лат. re - повторение, productio - производство), проходит в 6 стадий:

1) адсорбция вирионов на клетке;

2) проникновение вируса в клетку;

3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса);

4) синтез вирусных компонентов ;

5) формирование ви­рионов;

6) выход вирионов из клетки.

У раз­личных вирусов эти стадии отличаются

Адсорбция вирусов. Первая стадия репродук­ции вирусов - адсорбция, т. е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза - неспецифическая, обусловленная ионным притяжением между вирусом и клеткой, включая и другие механиз­мы. Вторая фаза адсорбции - высокоспецифи­ ческая, обусловленная гомологией, комплемен-тарностью рецепторов чувствительных клеток и «узнающих» их белковых лигандов вирусов. Белки на поверхности вирусов, узнающие спе­цифические клеточные рецепторы и взаимо­действующие с ними, называются прикрепи­ тельными белками (в основном это гликопроте ины) в составе липопротеиновой оболочки.

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков, липидов и др. Так, рецепторами для вируса грип­па является сиаловая кислота в составе гли-копротеинов и гликолипидов (ганглиозидов) клеток дыхательных путей. Вирусы бешенства адсорбируются на ацетилхолиновых рецепто­рах нервной ткани, а вирусы иммунодефицита человека - на СО4-рецепторах Т-хелперов, моноцитов и дендритных клеток. На одной клетке находится от десяти до ста тысяч спе­цифических рецепторов, поэтому на ней могут адсорбироваться десятки и сотни вирионов.

Наличие специфических рецепторов лежит в основе избирательности поражения вируса­ми определенных клеток, тканей и органов. Это так называемый тропизм (греч. tropos - поворот, направление). Например, вирусы, репродуцирующиеся преимущественно в клетках печени, называются гепатотропными, в нервных клетках - нейротропными, в иммунокомпетентных клетках - иммунотропными и т. д.

Проникновение вирусов в клетку. Вирусы проникают в клетку путем рецептор-зависи­мого эндоцитоза (виропексиса), или слияния оболочки вируса с клеточной мембраной, или же в результате сочетания этих механизмов.

1 . Рецептор-зависимый эндоцитоз происхо­дит в результате захватывания и поглоще­ния вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эн­досомы), содержащей вирус. За счет АТФ-зависимого «протонного» насоса содержимое эндосомы закисляется, что приводит к слия­нию липопротеиновой оболочки сложно ор­ганизованного вируса с мембраной эндосомы и выходу вирусного нуклеокапсида в цитозоль клетки. Эндосомы объединяются с лизосомами, которые разрушают оставшиеся вирусные компоненты. Процесс выхода безоболочечных (просто организованных) вирусов из эн­досомы в цитозоль остается малоизученным.

2. Слияние обточки вириона с клеточной мемб­ раной характерно только для некоторых оболочечных вирусов (парамиксовирусов, ретровиру-сов, герпесвирусов), в составе которых имеются белки слияния. Происходит точечное взаимо­действие вирусного белка слияния с липидами клеточной мембраны, в результате чего вирус­ная липопротеиновая оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса попадает в цитозоль.

А) «Раздевание» (депротеинизация) вирусов. В результате высвобождается его внутренний компонент, способный вызы­вать инфекционный процесс. Первые этапы «раздевания» вируса начинаются в процессе его проникновения в клетку путем слияния вирус­ных и клеточных мембран или же при выходе вируса из эндосомы в цитозоль. Последующие этапы «раздевания» вируса тесно взаимосвя­заны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные учас­тки «раздевания» в клетке: для пикорнавирусов- в цитоплазме с участием лизосом, аппарата Гольджи; для герпесвирусов - около­ядерное пространство или поры ядерной мем­браны; для аденовирусов - сначала структуры цитоплазмы, а затем ядро клетки. Конечными продуктами «раздевания» могут быть нуклеи­новая кислота, нуклеопротеин (нуклеокапсид) или сердцевина вириона. Так, конечным продуктом раздевания пикарновирусов является нуклеиновая кислота, ковалентно связанная с одним из внутренних белков. А у многих оболочечных РНК-содержащих вирусов ко­нечными продуктами «раздевания» могут быть нуклеокапсиды или сердцевины, которые не только не препятствуют экспрессии вирусного генома, а, более того, защищают его от кле­точных протеаз и регулируют последующие биосинтетические процессы.

В) Синтез вирусных компонентов. Синтез белков и нуклеиновых кислот вируса, который разобщен во времени и пространстве. Синтез осущест­вляется в разных частях клетки, поэтому такой способ размножения вирусов называется дизъ­ юнктивным (от лат. disjunctus - разобщенный).

С) Синтез вирусных белков . В зараженной клет­ке вирусный геном кодирует синтез двух групп белков:

1. неструктурных белков, обслуживаю­щих внутриклеточную репродукцию вируса на разных его этапах;

2. структурных белков, которые входят в состав вириона (геномные, связанные с геномом вируса, капсидные и су-перкапсидные белки).

К неструктурным бел­ кам относятся: 1) ферменты синтеза РНК или ДНК (РНК- или ДНК-полимеразы), обеспе­чивающие транскрипцию и репликацию ви­русного генома; 2) белки-регуляторы; 3) пред­шественники вирусных белков, отличающиеся своей нестабильностью в результате быстрого нарезания на структурные белки; 4) фермен­ты, модифицирующие вирусные белки, на­пример, протеиназы и протеинкиназы.

Синтез белков в клетке осуществляется в со­ответствии с хорошо известными процессами транскрипции (от лат. transcriptio - переписы­вание) путем «переписывания» генетической информации с нуклеиновой кислоты в нуклео-тидную последовательность информационной РНК (иРНК) и трансляции (от лат. translatio - передача) - считывания иРНК на рибосомах с образованием белков. Передача наследствен­ной информации в отношении синтеза иРНК у разных групп вирусов неодинакова.

I . ДНК-содержашие вирусы реализуют ге­нетическую информацию так же, как и кле­точный геном, по схеме:

геномная ДНК вируса -» транскрипция иРНК -» трансляция белка вируса.

Причем ДНК-содержашие вирусы исполь­зуют для этого процесса клеточную полимеразу (вирусы, геномы которых транскри­бируются в ядре клетки - аденовирусы, па-повавирусы, герпесвирусы) или собственную РНК-полимеразу (вирусы, геномы которых транскрибируются в цитоплазме, например поксвирусы).

II . Плюс-нитевые РНК-содержашие вирусы (например, пикорнавирусы, флавивирусы, тогавирусы) имеют геном, выполняющий функ­цию иРНК; он распознается и транслируется рибосомами. Синтез белков у этих вирусов осу­ществляется без акта транскрипции по схеме:

геномная РНК вируса -> трансляция белка вируса.

III . Геном минус-однонитевых РНК-содержаших вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов) и двунитевых (реовирусов) служит матрицей, с которой транскрибируется иРНК, при участии РНК-полимеразы, связанной с нуклеино­вой кислотой вируса. Синтез белка у них происхо­дит по схеме:

геномная РНК вируса -» транскрипция и-РНК - трансляция белка вируса.

IV . Ретровирусы (вирусы иммунодефицита человека, онкогенные ретровирусы) имеют уникальный путь передачи генетической ин­формации. Геном ретровирусов состоит из двух идентичных молекул РНК, т. е. является диплоидным. В составе ретровирусов есть осо­бый вирусоспецифический фермент - обрат­ная транскриптаза, или ревертаза, с помощью которой осуществляется процесс обратной транскрипции, т. е. на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Комплементарная нить ДНК копируется с образованием двунитевой ком­плементарной ДНК, которая интегрирует в клеточный геном и в его составе транскриби­руется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков для этих вирусов осуществляется по схеме:

геномная РНК вируса -> комплементарная ДНК -» транскрипция иРНК

-»трансляция белка вируса.

Репликация вирусных геномов, т. е. синтез ви­русных нуклеиновых кислот, приводит к на­коплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации генома зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических или клеточных полимераз, а также от способности вирусов индуцировать образование полимераз в клетке.

Механизм репликации отличается у вирусов, имеющих:

1) двунитевую ДНК;

2) однонитевую ДНК;

3) плюс-однонитевую РНК;

4) минус-одноните-вую РНК;

5) двунитевую РНК;

6) идентичные плюс-нитевые РНК (ретровирусы).

1. Двунитевые ЛНК-вирусы . Репликация двунитевых вирусных ДНК происходит обычным полуконсервативным механизмом: после рас- плетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь син­тезированная молекула ДНК состоит из одной родительской и одной вновь синтезирован­ной нити. К этим вирусам относится большая группа вирусов, которые содержат двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме, как папилломавирусы. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.

Уникальный механизм репликации харак­терен для гепаднавирусов (вируса гепатита В). Геном гепаднавирусов представлен дву-нитевой кольцевой ДНК, одна нить которой короче (неполная плюс-нить) другой нити. Первоначально достраивается (рис. 3.7). Затем полная двунитевая ДНК с помощью клеточ­ной ДНК-зависимой РНК-полимеразы транс­крибируется с образованием небольших моле­кул иРНК и полной однонитевой плюс-РНК. Последняя называется прегеномной РНК; она является матрицей для репликации генома ви­руса. Синтезированные иРНК участвуют в про­цессе трансляции белков, в том числе вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). С помощью этого фермента мигрирующая в цитоплазму прегеномная РНК обратно транскрибируется в минус-нить ДНК, которая, в свою очередь, служит матрицей для синтеза плюс-нити ДНК. Этот процесс за­канчивается образованием двунитевой ДНК, содержащей неполную плюс-нить ДНК.

    Однонитевые ДНК-вирусы . Единствен­ными представителями однонитевых ДНК-вирусов являются парвовирусы. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы послед­ него. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей для синтеза плюс-нити ДНК нового вириона. Параллельно синтезируется иРНК, происхо­дит трансляция вирусных пептидов.

    Плюс-однонитевые РНК-вирусы . Эти виру­сы включают большую группу вирусов - пикорнавирусы, флавивирусы, тогавирусы (рис.3.8), у которых геномная плюс-нить РНК вы­полняет функцию иРНК. Например, РНК полиовирусов после проникновения в клетку связывается с рибосомами, работая как иРНК, и на ее основе синтезируется большой поли­пептид, который расщепляется на фрагменты: РНК-зависимую РНК-полимеразу, вирусные протеазы и капсидные белки. Полимераза на основе геномной плюс-нити РНК синтези­рует минус-нить РНК; формируется времен­но двойная РНК, названная промежуточным репликативным звеном. Это промежуточное репликативное звено состоит из полной плюс-нити РНК и многочисленных частично завер­шенных минус-нитей. Когда образованы все минус-нити, они используются как шаблоны для синтеза новых плюс-нитей РНК. Этот механизм используется как для размножения геномной РНК вируса, так и для синтеза боль­шого количества вирусных белков.

    Минус-однонитевые РНК-вирусы. Минус -однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полиме­разу. Проникшая в клетку геномная минус- нить РНК трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются матрицей (промежуточная стадия) для синтеза минус-нитей геномной РНК потомства

    Двунитевые РНК-вирусы. Механизм реп­ликации этих вирусов (реовирусов и ротави-русов) сходен с репликацией минус-однонитевых РНК-вирусов. Отличие состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они яв­ляются матрицами для синтеза минус-нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоп­лазме клеток.

6 . Ретровирусы (плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матри­це РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегриру­ет с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Формирование вирусов. Вирионы формиру­ются путем самосборки: составные части вириона транспортируются в места сборки ви­руса - участки ядра или цитоплазмы клетки. Соединение компонентов вириона обуслов­ лено наличием гидрофобных, ионных, водо­родных связей и стерического соответствия.

Существуют следующие общие принципы сборки вирусов :

Формирование вирусов- многоступенча­тый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов.

    Сборка просто устроенных вирусов за­ключается во взаимодействии вирусных нук­леиновых кислот с капсидными белками и в образовании нуклеокапсидов.

    У сложноустроенных вирусов сначала фор­мируются нуклеокапсиды, которые взаимо­действуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса).

Причем сборка вирусов, реплициру­ющихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.

    У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, парамиксовирусов) в сборку вовлекается так назы­ваемый матриксный белок (М-белок), который расположен под модифицированной клеточной ембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокапсидом и вирусной липопротеиновой оболочкой.

Сложноустроенные вирусы в процессе формирования включают в свой состав неко­торые компоненты клетки хозяина, например липиды и углеводы.

Выход вирусов из клетки. Полный цикл реп­родукции вирусов завершается через 5-6 ч (вирус гриппа и др.) или через несколько су­ток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.

    Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имею­щие липопротеиновой оболочки.

    Почкование, экзоцшпт присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к кле­точным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины ви­риона с клеточной мембраной начинается вы­пячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и про­дуцировать вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, парамиксовирусы, тогавирусы), либо через мембраны эндоплазматической сети с последующим их выходом на поверх­ность клетки (например, буньявирусы).

Вирусы, формирующиеся в ядре клетки (например, герпесвирусы), почкуются в перинуклеарное пространство через модифициро­ванную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.



 


Читайте:



Обновление Android Oreo для Samsung Galaxy (2018)

Обновление Android Oreo для Samsung Galaxy (2018)

21 августа 2017 года состоялась долгожданная презентация новой операционной системы компании Google. Платформа получила запоминающееся название -...

Как узнать скрытый номер

Как узнать скрытый номер

Сейчас актуальным вопрос является вопрос со скрытыми номерами. Наверняка, Вам поступали звони от скрытых номеров. Неприятно, правда? Особенно,...

Тарифный план maxi smart мтс

Тарифный план maxi smart мтс

С того момента как тариф «Смарт» стал доступен для активации, он претерпел множество изменений. Они касаются размера абонентской платы, количества...

Автоматические настройки интернета "Мегафон": инструкция для пользователей

Автоматические настройки интернета

Чаще всего ручная регулировка интернета на современных сим-картах не требуется – достаточно включить передачу данных в настройках устройства и...

feed-image RSS